plot_1d_slice.pyΒΆ
plot_1d_slice
plots a grid function along one of the coordinate axis. If 1D
is available, then it is used. If not, then 2D data is used (slicing it so that
the other coordinate is set to 0). If 2D data is not available, then 3D is used.
#!/usr/bin/env python3
# PYTHON_ARGCOMPLETE_OK
# Copyright (C) 2021-2024 Gabriele Bozzola
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, see <https://www.gnu.org/licenses/>.
import logging
import matplotlib.pyplot as plt
from kuibit import argparse_helper as kah
from kuibit.simdir import SimDir
from kuibit.visualize_matplotlib import (
add_text_to_corner,
save_from_dir_filename_ext,
set_axis_limits_from_args,
setup_matplotlib,
)
if __name__ == "__main__":
desc = """\
{kah.get_program_name()} plots a grid function on one of the coordinate axis. 1D
data is used if available, otherwise higher dimensional data is used."""
parser = kah.init_argparse(desc)
kah.add_figure_to_parser(parser, add_limits=True)
parser.add_argument(
"--variable", type=str, required=True, help="Variable to plot."
)
parser.add_argument(
"--iteration",
type=int,
default=-1,
help="Iteration to plot. If -1, the latest.",
)
parser.add_argument(
"--multilinear-interpolate",
action="store_true",
help="Whether to interpolate to smooth data with multilinear"
" interpolation before plotting.",
)
parser.add_argument(
"--resolution",
type=int,
default=1000,
help="Resolution to use for the plot.",
)
parser.add(
"--logscale", help="Use a logarithmic y scale.", action="store_true"
)
parser.add_argument(
"--absolute",
action="store_true",
help="Whether to take the absolute value.",
)
parser.add_argument(
"--axis",
type=str,
choices=["x", "y", "z"],
default="x",
help="Axis to plot (default: %(default)s)",
)
args = kah.get_args(parser)
setup_matplotlib(rc_par_file=args.mpl_rc_file)
iteration, var_name, axis = args.iteration, args.variable, args.axis
logger = logging.getLogger(__name__)
if args.verbose:
logging.basicConfig(format="%(asctime)s - %(message)s")
logger.setLevel(logging.DEBUG)
if args.figname is None:
figname = f"{var_name}_{axis}_sliced"
else:
figname = args.figname
with SimDir(
args.datadir,
ignore_symlinks=args.ignore_symlinks,
pickle_file=args.pickle_file,
) as sim:
logger.debug("Prepared SimDir")
# Okay, we need to understand where to read the data from
# Do we have 1D data?
if var_name not in sim.gridfunctions[axis]:
# We do not have 1D data, so let's check if we have 2D data
logger.debug(f"{var_name} not available in {axis}")
# Depending on what axis the user requested, we need to look at
# different data. The variable containing_axis maps the axis
# to 2D data that might contain it.
containing_axis = {
"x": ("xy", "xz"),
"y": ("xy", "yz"),
"z": ("xz", "yz"),
}
# Now we loop over the two possible containing axis finding where
# the variable is available
var_in_2D = [
var_name in sim.gridfunctions[ax]
for ax in containing_axis[axis]
]
# Do we any the data among the 2D data?
if not any(var_in_2D):
logger.debug(f"{var_name} not available in 2D data")
# We don't have the data in the 2D files, so we should check 3D
# data
if var_name not in sim.gridfunctions.xyz:
# We don't have the data in the 3D files either, hence we
# don't have the data at all.
raise ValueError(
f"{var_name} is not available in 1D, 2D, and 3D data"
)
# We have the data in the 3D files
logger.debug("Using 3D data")
# Let's read it
var_3D = sim.gridfunctions.xyz[var_name]
if iteration == -1:
iteration = var_3D.available_iterations[-1]
time = var_3D.time_at_iteration(iteration)
logger.debug(f"Using iteration {iteration} (time = {time})")
# Now we have to slice it. The variable cuts tells me how to.
# We keep one dimension, and set 0, 0 to the others.
cuts = {
"x": [None, 0, 0],
"y": [0, None, 0],
"z": [0, 0, None],
}
var = var_3D[iteration].sliced(cuts[axis])
else: # var_name available in 2D data
logger.debug("Using 2D data")
# var_in_2D contains two elements. These can be both True, or
# only one of the two (in that case, the other must be False).
# We need to pick one of the Trues to know what 2D data to read.
# var_in_2D.index(True) returns the index of the first True in
# the iterable.
which_axes = containing_axis[axis][var_in_2D.index(True)]
var_2D = sim.gridfunctions[which_axes][var_name]
if iteration == -1:
iteration = var_2D.available_iterations[-1]
time = var_2D.time_at_iteration(iteration)
logger.debug(f"Using iteration {iteration} (time = {time})")
# Now we have to slice the 2D data. We could be clever, but we
# will be clear. cuts is a dictionary that spells out all the
# possible options, depending on the containing axes and the
# requested one.
cuts = {
"xy": {"x": [None, 0], "y": [0, None]},
"xz": {"x": [None, 0], "z": [0, None]},
"yz": {"y": [None, 0], "z": [0, None]},
}
# Now we have to slice it
var = var_2D[iteration].sliced(cuts[which_axes][axis])
else: # var_name available in 1D data
logger.debug("Using 1D data")
# Here we just have to read the data
var = sim.gridfunctions[axis][var_name]
if iteration == -1:
iteration = var.available_iterations[-1]
time = var.time_at_iteration(iteration)
logger.debug(f"Using iteration {iteration} (time = {time})")
var = var[iteration]
if args.absolute:
data = abs(var)
variable_name = f"abs({var_name})"
else:
data = var
variable_name = var_name
logger.debug("Resampling to UniformGridData")
# We cast to a GridSeries, which is easier to plot.
data = data.to_UniformGridData(
[args.resolution],
x0=[args.xmin],
x1=[args.xmax],
resample=args.multilinear_interpolate,
).to_GridSeries()
if args.logscale:
label = f"log10({variable_name})"
data = data.log10()
else:
label = variable_name
logger.debug(f"Using label {label}")
logger.debug(f"Plotting variable {var_name}")
plt.plot(data, label=label)
add_text_to_corner(rf"$t = {time:.3f}$")
plt.xlabel(axis)
plt.ylabel(label)
set_axis_limits_from_args(args)
logger.debug("Saving")
save_from_dir_filename_ext(
args.outdir,
figname,
args.fig_extension,
tikz_clean_figure=args.tikz_clean_figure,
)
logger.debug("DONE")