plot_gw_energy.pyΒΆ
plot_gw_energy
plots the gravitational-wave energy and luminosity as
measured from a given detector as a function of time.
#!/usr/bin/env python3
# PYTHON_ARGCOMPLETE_OK
# Copyright (C) 2021-2024 Gabriele Bozzola
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, see <https://www.gnu.org/licenses/>.
import logging
import matplotlib.pyplot as plt
from kuibit import argparse_helper as kah
from kuibit.simdir import SimDir
from kuibit.visualize_matplotlib import (
add_text_to_corner,
get_figname,
save_from_dir_filename_ext,
set_axis_limits_from_args,
setup_matplotlib,
)
if __name__ == "__main__":
desc = f"""\
{kah.get_program_name()} plots the gravitational-wave luminosity and cumulative
energy as a function of time for a given detector. """
parser = kah.init_argparse(desc)
kah.add_figure_to_parser(parser, add_limits=True)
parser.add_argument(
"--detector-num",
"--num-detector",
type=int,
required=True,
help="Number of the spherical surface over which to read Psi4.",
)
parser.add_argument(
"--pcut",
type=int,
required=True,
help="Period that enters the fixed-frequency integration."
" Typically, the longest physical period in the signal.",
)
args = kah.get_args(parser)
setup_matplotlib(rc_par_file=args.mpl_rc_file)
logger = logging.getLogger(__name__)
if args.verbose:
logging.basicConfig(format="%(asctime)s - %(message)s")
logger.setLevel(logging.DEBUG)
figname = get_figname(args, default=f"gw_energy_det{args.detector_num}")
logger.debug(f"Using figname {figname}")
with SimDir(
args.datadir,
ignore_symlinks=args.ignore_symlinks,
pickle_file=args.pickle_file,
) as sim:
logger.debug("Prepared SimDir")
radius = sim.gravitationalwaves.radii[args.detector_num]
logger.debug(f"Using radius: {radius}")
logger.debug("Computing energy")
energy = sim.gravitationalwaves[radius].get_total_energy(args.pcut)
logger.debug("Computed energy")
logger.debug("Computing power")
power = sim.gravitationalwaves[radius].get_total_power(args.pcut)
logger.debug("Computed power ")
logger.debug("Plotting")
fig, (ax1, ax2) = plt.subplots(2, sharex=True)
ax1.plot(power.time_shifted(-radius))
# We set E = 0 at t - r = 0
ax2.plot(energy.time_shifted(-radius) - energy(radius))
ax2.set_xlabel(r"Time - Detector distance $(t - r)$")
ax1.set_ylabel(r"$dE\slash dt (t)$")
ax2.set_ylabel(r"$E^{<t}(t)$")
add_text_to_corner(
f"Det {args.detector_num}", anchor="SW", offset=0.005
)
add_text_to_corner(rf"$r = {radius:.3f}$", anchor="NE", offset=0.005)
set_axis_limits_from_args(args)
logger.debug("Plotted")
logger.debug("Saving")
save_from_dir_filename_ext(
args.outdir,
figname,
args.fig_extension,
tikz_clean_figure=args.tikz_clean_figure,
)
logger.debug("DONE")