plot_total_luminosity.pyΒΆ
plot_total_luminosity
plots the total luminosity of gravitational and
electromagnetic waves as a function of time as measured on a given spherical
surface. The luminosity is computed with the Weyl formalism (from \(\Psi_4\)
and \(\Phi_2\)).
#!/usr/bin/env python3
# PYTHON_ARGCOMPLETE_OK
# Copyright (C) 2021-2024 Gabriele Bozzola
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, see <https://www.gnu.org/licenses/>.
import logging
import matplotlib.pyplot as plt
from kuibit import argparse_helper as kah
from kuibit.simdir import SimDir
from kuibit.visualize_matplotlib import (
add_text_to_corner,
get_figname,
save_from_dir_filename_ext,
set_axis_limits_from_args,
setup_matplotlib,
)
if __name__ == "__main__":
desc = f"""\
{kah.get_program_name()} plots the gravitational-wave plus the
electromagnetic-wave luminosity as a function of time for a given detector."""
parser = kah.init_argparse(desc)
kah.add_figure_to_parser(parser, add_limits=True)
parser.add_argument(
"--detector-num",
type=int,
required=True,
help="Number of the spherical surface over which to read Psi4 and Phi2.",
)
parser.add_argument(
"--pcut",
type=int,
required=True,
help="Period that enters the fixed-frequency integration."
" Typically, the longest physical period in the signal.",
)
args = kah.get_args(parser)
setup_matplotlib(rc_par_file=args.mpl_rc_file)
logger = logging.getLogger(__name__)
if args.verbose:
logging.basicConfig(format="%(asctime)s - %(message)s")
logger.setLevel(logging.DEBUG)
figname = get_figname(
args, default=f"tot_luminosity_det{args.detector_num}"
)
logger.debug(f"Using figname {figname}")
with SimDir(
args.datadir,
ignore_symlinks=args.ignore_symlinks,
pickle_file=args.pickle_file,
) as sim:
logger.debug("Prepared SimDir")
radius = sim.gravitationalwaves.radii[args.detector_num]
logger.debug(f"Using radius {radius}")
logger.debug("Computing GW power")
power_gw = sim.gravitationalwaves[radius].get_total_power(args.pcut)
logger.debug("Computed GW power")
logger.debug("Computing EM power")
power_em = sim.electromagneticwaves[radius].get_total_power()
logger.debug("Computed EM power")
logger.debug("Plotting")
plt.plot((power_gw + power_em).time_shifted(-radius))
plt.xlabel(r"Time - Detector distance $(t - r)$")
plt.ylabel(r"$dE\slash dt (t)$")
add_text_to_corner(
f"Det {args.detector_num}", anchor="SW", offset=0.005
)
add_text_to_corner(rf"$r = {radius:.3f}$", anchor="NE", offset=0.005)
set_axis_limits_from_args(args)
logger.debug("Plotted")
logger.debug("Saving")
save_from_dir_filename_ext(
args.outdir,
figname,
args.fig_extension,
tikz_clean_figure=args.tikz_clean_figure,
)
logger.debug("DONE")